Pharmaceutical products

Computer-generated image of insulin hexamers highlighting the threefold symmetry, the zinc ions holding it together, and the histidine residues involved in zinc binding.
Most traditional pharmaceutical drugs are relatively simple molecules that have been found primarily through trial and error to treat the symptoms of a disease or illness.[citation needed] Biopharmaceuticals are large biological molecules known as proteins and these usually target the underlying mechanisms and pathways of a malady (but not always, as is the case with using insulin to treat type 1 diabetes mellitus, as that treatment merely addresses the symptoms of the disease, not the underlying cause which is autoimmunity); it is a relatively young industry. They can deal with targets in humans that may not be accessible with traditional medicines. A patient typically is dosed with a small molecule via a tablet while a large molecule is typically injected.
Small molecules are manufactured by chemistry but larger molecules are created by living cells such as those found in the human body: for example, bacteria cells, yeast cells, animal or plant cells.
Modern biotechnology is often associated with the use of genetically altered microorganisms such as E. coli or yeast for the production of substances like synthetic insulin or antibiotics. It can also refer to transgenic animals or transgenic plants, such as Bt corn. Genetically altered mammalian cells, such as Chinese Hamster Ovary (CHO) cells, are also used to manufacture certain pharmaceuticals. Another promising new biotechnology application is the development of plant-made pharmaceuticals.
Biotechnology is also commonly associated with landmark breakthroughs in new medical therapies to treat hepatitis Bhepatitis Ccancersarthritis,haemophiliabone fracturesmultiple sclerosis, and cardiovascular disorders. The biotechnology industry has also been instrumental in developing molecular diagnostic devices that can be used to define the target patient population for a given biopharmaceutical. Herceptin, for example, was the first drug approved for use with a matching diagnostic test and is used to treat breast cancer in women whose cancer cells express the protein HER2.
Modern biotechnology can be used to manufacture existing medicines relatively easily and cheaply. The first genetically engineered products were medicines designed to treat human diseases. To cite one example, in 1978 Genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium Escherichia coli. Insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals (cattle and/or pigs). The resulting genetically engineered bacterium enabled the production of vast quantities of synthetic human insulin at relatively low cost.[9] According to a 2003 study undertaken by the International Diabetes Federation (IDF) on the access to and availability of insulin in its member countries, synthetic 'human' insulin is considerably more expensive in most countries where both synthetic 'human' and animal insulin are commercially available: e.g. within European countries the average price of synthetic 'human' insulin was twice as high as the price of pork insulin.[10] Yet in its position statement, the IDF writes that "there is no overwhelming evidence to prefer one species of insulin over another" and "[modern, highly purified] animal insulins remain a perfectly acceptable alternative.[11]
Modern biotechnology has evolved, making it possible to produce more easily and relatively cheaply human growth hormoneclotting factors for hemophiliacsfertility drugserythropoietin and other drugs.[12] Most drugs today are based on about 500 molecular targets. Genomic knowledge of the genes involved in diseases, disease pathways, and drug-response sites are expected to lead to the discovery of thousands more new targets.[12]

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Powered by Blogger | Printable Coupons